

Study on CO₂ **Rankine Cycles** for Low and **Medium Temperature** Geothermal Sources for **Power Production** and Cogeneration

Study on Rankine and Heat cycles for geothermal plants using carbon dioxide as working fluid

The study refers at three types of plants, producing:

- 1. Only electric power
- 2. Electric power and hot tap water
- 3. Electric power and district heating

The CO₂ pressure-enthalpy diagram used for the study of binary and heat cycles

The initial data:

- a. Temperature of geothermal source 120°C
- b. Temperature of cooling source:

10°C – producing only electric power,

40°C − producing electric power and hot tap water,

50-70°C – producing electric power and heating agent for district heating

c. Working agent CO2

Clausius-Rankine direct cycle

The thermal efficiency of CO₂ power cycle was determined using the well-known formula:

$$\eta_t = \frac{l_{12} + l_{34}}{q_{41}} = \frac{(i_1 - i_2) + (i_3 - i_4)}{i_1 - i_4} = 1 - \frac{i_2 - i_3}{i_1 - i_4}$$

 l_{12} – specific work produced in the turbine

 l_{34} – specific work consumed in the pump

q₄₁ – heat provided by geothermal water

The <u>theoretical</u> global thermal efficiency of CO2 direct cycle, considering cogeneration of power and heat is 100 %

$$\eta_t == \frac{l_{12} + l_{34} + |q_{23}|}{q_{41}} = \frac{(i_1 - i_2) + (i_3 - i_4) + (i_2 - i_3)}{i_1 - i_4} = \frac{i_1 - i_4}{i_1 - i_4} = 1$$

The power efficiency will be determined for all the cycles with the same formula

q₂₃ - heat provided by CO2 to hot tap water or district heating agents

All cycles are consisting of:

1-2: isentropic expansion

2-3: isobaric cooling

3-4: isentropic compression

4-1: isobaric heating

CO₂ vapour (heat) direct cycle

All the studied cycles were limited by following curves:

isothermal curve: t = 120 °C;

isobaric curve: p = 120 bar

isothermal curve: $t = 10^{\circ}C$;

isobaric curve: p = 45 bar

The studied binary cycles, producing only electrical power were limited by following curves:

isothermal curve: t = 115°C; isobaric curve: p = 120 bar isothermal curve: t = 10°C; isobaric curve: p = 45 bar

The studied parameters was the condensation temperature from 10 to 31 °C, and the upper pressure from 100 to 120 bur

The power efficiency is increasing with the growth of upper pressure $(p_1=p_4)$ and lowering of condensation temperature $(t_3=t_2)$

The maximum efficiency ($\approx 12,5\%$) was provided for upper pressure 120 bar and condensation temperature of 10 °C

The studied heat cycles, producing simultaneously electrical power and hot tap water were limited by following curves:

isobaric curve: $p_1 = p_4 = 120$ bar; isothermal curve: $t_1 = 115$ °C;

isobaric curve: $p_2 = p_3 = 45$ bar isothermal curve: $t_2 = 60$ °C;

The studied parameters were the exit cooling temperature t_3 from 20 to 50 °C, and the upper pressure from 100 to 120 bar

The power efficiency is decreasing with the growth of upper pressure $(p_1=p_4)$ presenting no significant variation with lowest temperature $(t_3=t_2)$

The maximum efficiency ($\approx 14.43\%$) was provided for upper pressure 100 bar and cooling exit temperature of 25 °C

Power efficiency of CO₂ cycles producing electrical power and hot tap water: t1=115°C, t2=60°C

The studied heat cycles, producing simultaneously electrical power and

heating agent for district heating were limited by following curves:

isobaric curve: $p_1 = p_4 = 120$ bar; isothermal curve: $t_1 = 115$ °C;

isobaric curve: $p_2 = p_3 = 60$ bar isothermal curve: $t_2 = 80$ °C;

The studied parameters was the exit cooling temperature t_3 from 54 to 66 °C, and the upper pressure from 100 to 120 bar

The power efficiency is decreasing with the growth of upper pressure $(p_1=p_4)$ and slightly descending with growth of lowest temperature $(t_3=t_2)$

The maximum efficiency ($\approx 9.13\%$) was provided for upper pressure 100 bar and cooling lowest temperature of 54 °C

Power efficiency of CO2 cycles producing electrical power and heat agent for district heating: t1=115°C, t2=80°C

The study was conducted developing Excel spreadsheets using data for CO₂ properties provided by:

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)

and COOLPACK software

We also developed Interpolation (User Defined) Visual Basic Function to calculate the CO₂ properties at any given state inside the limited studied field:

$$-s = s(t, p)$$

$$-h=h(p, s)$$

$$-h = h(p, t)$$

$$-t = t(p) - saturation curve$$

$$-p = p(t) - saturation curve$$

Conclusions (I)

We can use CO_2 as working fluid in power plants working on the Clausius – Rankine cycle using geothermal water as heat source, but the thermal efficiency is relatively low ($\approx 12,5 \%$), consisting off power efficiency only.

We can improve the power efficiency of binary cycle by :

- Working with higher upper pressures (more than 120 bar)
- Lowering the temperature of condensation agent (below 10 °C)
- Make sure that points 2 and 3 are on the saturation curve (no cooling before condensation and no overcooling of liquid CO_2 are needed)

Conclusions (II)

We can also use CO2 as agent in plants working on vapour cycle using geothermal water and also producing hot tap water in CO_2 cooling process. The thermal efficiency is theoretically high (100%), consisting off power efficiency (14,4%), and heating efficiency (85,6%).

The same sort of cycles may be used for plants producing electrical power and heating agent for district heating in CO_2 cooling process. The thermal efficiency is theoretically the same (100%), consisting off power efficiency (9,14%), and heating efficiency (91,86%).

We can improve the power efficiency of the vapour cycle by

- Working with higher upper temperatures, if possible (more than 115 °C)
- Working with moderate upper pressures (100 °bar)